Have a Ball! Turn a [thin wall hollow] Sphere.

Handout

Primary Audience: Intermediate.
Time: 1.5 to 2 hours.
Prerequisites: None. Some turning helpful.

Objective.

The objective of this demo is to show you how to turn a thin wall hollow sphere using a template. The template method is easy to use, and success is not difficult when following two key guidelines. If making a Belted Ball refer to variations described later in this document.

Introduction.

Have you noticed? Many of the woodturning YouTube videos leave you in the dark about how to do what you just saw? This demo is supposed to be different!

Sure, I'll show you how I do it, but what I really want to do is to help you learn how $\boldsymbol{y} \boldsymbol{u}$ can do it. There are several important tips to note along the way that will go far toward success the first time you try it and every time thereafter. Look for these points as we go through the process and be sure to ask questions if you don't understand (or if I forget to mention them).

Let's start with blank selection. In the beginning I had always chucked up a spindle (end grain) blank and waded in because that was how I had always done this kind of stuff. At some point between then and now, for reasons lost to an aging memory, I began
 rethinking the process. Here are two reasons to start with a face grain blank.

1. Face grain glue joints are much stronger than end grain joints. In a thin wall sphere, there is not much surface area in the glue joint, and there may be considerable stress on that joint in the turning process. I have had them fail.
2. The glue joint is virtually impossible to hide when it cuts straight across grain lines, but it may come close to disappearing when closely aligned with the figure.

A thin wall wooden ball is just two concentric spheres; one of air and one of wood. Here are two points to remember to solve the concentricity problem when turning the outside wooden sphere and you cannot see the inside sphere of air.

Have a Ball! Turn a [thin wall hollow] Sphere.

Handout

1. Pay close attention to the diameter guideline on the inside circumference template. It will help you place exactly half of the inside sphere on each side of the glue joint.
2. Pay close attention to the perpendicular guideline on the outside circumference template. It will help you place the outside sphere concentrically around the inside sphere.

Still honing your sharpening skills? Having trouble making things concentric? Give yourself some wiggle room. Do a few with a thicker wall.

Enough of the introduction. If time permits, we'll make a template and fixtures to hold the sphere.

Start with the blank.

About 5/8" longer than wide for tenons e.g. $31 / 4 "$ x $37 / 8^{\prime \prime}$ for a $3 "$ sphere.
Option: Cut in half on band saw (while rectangular) instead of parting on the lathe for better grain matching. If the ends and center cut are not perfectly parallel the halves can slip out of alignment. Taping the joint may help the figure remain aligned, at least while tenons are cut..

Consider grain orientation.
Glue joint strength.
Figure matching.
Laminations.
Desired final product.
Make a cylinder (or more cylindrical) between centers.
A live center with point \& cup in tailstock makes alignment during remounting easier in final steps.

Mark center and left and right side limits. Include loss to parting kerf.
Make short (1/4") tenons to reduce mass to be removed later.

Reduce to desired outside diameter plus a little. (1/8")

Reverse mount in chuck so point \& cup center marks both ends.
Part (if not cut with band saw).

Hollow chucked half.

Tip.

Think about entering a parking space in a crowded parking lot.

Have a Ball! Turn a [thin wall hollow] Sphere.

Handout

$>$ This is a good place to take your time!
$>$ Refine face for glue joint.
$>$ Define approximate inside diameter limit.
$>$ Be aware of grain orientation, but uphill / downhill is not so important on the inside of a hollow sphere..
$>$ Turn the lathe off to measure the inside!

Chuck $2^{\text {nd }}$ half and hollow.

Remember! Inside and outside spheres need to be concentric and balanced between the halves.

Glue.

Trap!

Measure the inside with the template where the nub would be but with NO NUB!

Tip.

Rate of tool handle movement for hollowing a spherical profile is constant throughout the cut.
$>$ Dry align figure with point centers and mark for ease of alignment with glue. White glue is ok in many cases. Use yellow wood glue (Titebond) if you're not sure. I may use CA glue during a demo in order to continue with the same blank.
$>$ Apply glue, align, \& apply pressure with the tailstock.
$>$ Remove from lathe after 5 minutes but maintain pressure for curing.
$>$ Allow overnight to cure.
$>$ Finishing before the glue is cured results in a higher glue joint failure rate.
$>$ Mark the I.D. on the outside.

Shape the middle of the outside of the sphere.

$>$ This is a another good place to take your time!
$>$ Mark sphere limit near tenons to define target.
$>$ Be aware of grain orientation for proper tool use.
$>$ Middle needs to be nearly perfect so it will self center in the next step.
> Use quarter circle template. (Semicircle won't fit.)

- Imperfections here will compound problems completing a perfect sphere.
- The centerline of the outside template must align with and be perpendicular to the center of the sphere (glue joint).

Remount between cup chuck fixtures.

I used to half turn the sphere, rotate it 90 degrees between centers, and use a parting tool to create a groove, witness line, to guide completion of the sphere. I now prefer to simply use the ghost of the half completed sphere to guide completion.

Have a Ball! Turn a [thin wall hollow] Sphere.

Handout

Ghost method.

$>$ A sharp gouge, patience, and a little extra finesse pay dividends here!
$>$ Place a contrasting (dark) piece of material to enhance visibility of the ghost of the half turned sphere.
$>$ Cut the remaining rotating ends to match the ghost sphere.

Witness line method.

> Plain spindle or chuck jaws and cup live center with pads may be used.
$>$ Padded cup fixtures are helpful, but very thick pads (like from a mouse pad) can interfere with centering.
> Glue joint in line with axis of rotation vertically and horizontally.
$>$ Original axis spinning perpendicular. (Center point marks spin in line.)
$>$ Mark the line of rotation to be able to see where to place the parting tool.
$>$ Use a parting tool to gently and check orientation of center points.
> Continue until the witness line approaches the glue joint.
> Check for even cutting on both sides.
$>$ Remount between centers and continue shaping to the baseline.
$>$ Rotate and remount to remove the remaining nubs.

Rotate and remount between fixtures as needed to sand.

Here's a suggestion to facilitate sanding coverage.
$>$ Find a directional feature on the surface of the sphere.
$>$ Sand.
$>$ Rotate the directional feature 90 degrees about the directional feature.
$>$ Sand.
$>$ Rotate the directional feature 90 degrees to place the directional feature on the axis of rotation.

Remove and marvel at wht you've accomplished!

Have a Ball! Turn a [thin wall hollow] Sphere.

Handout

Making a template.

$>$ Refer to the illustration.
$>$ Use $1 / 4$ " plywood or similar material.
$>$ Holes are for hanging together on a peg.
$>$ Mount on the lathe with a supporting plate.
$>$ Use a point live center.
$>$ Use a parting tool to cut the inside template.
$>$ The parting tool gap will be the wall thickness.
$>$ Cut a full semicircle template from the outside part.

- The inside template must include the line through the center.

Reference lines are important for making exterior and interior spheres concentric !
$>$ Sand the semicircle edges.
$>$ The outside templates (half circle and quarter circle) must have the perpedicular centerlines.
$>$ The inside template must have the diameter line.
$>$ Cut away the waste (shaded areas).

Have a Ball! Turn a [thin wall hollow] Sphere.

Handout

Belted Ball Option.

$>$ Allow for the thickness of the belt when sizing the blank, measuring for parting, and making the inside sphere congruent with the outside sphere.
> Plan whether you want the belt centered on the sphere or slightly off center.
$>$ After beginning to hollow one hemisphere, glue the belt in place after making clean surfaces for gluing.
$>$ Use a gouge to make a tenon (foot) for the stand from
 the center of the belt.
$>$ Use a parting tool to cut the center from the belt.
$>$ Hollow the hemisphere with the belt keeping in mind the planned position of the belt.
$>$ After the sphere is complete, turn the face of the stand to cradle the sphere.

Have a Ball! Turn a [thin wall hollow] Sphere.

Handout

Frequently Asked Questions (FAQ).

Q: What gouge and grind do you use to hollow a sphere?
A: (short version) The angle between the side and bottom of a hemisphere is 45 degrees relative to the axis of rotation. Therefore, the bevel angle of the gouge must be greater than 45 degrees to reach the bottom while guiding (rubbing) on the bevel before the shaft contacts the side. I use about 60 degrees.

A: (long version) In my early days of doing these spheres I had quite a sore left index finger knuckle. When I finally grew weary of the pain, I analyzed the problem and realized I was using too acute an angle on my bowl gouge. In hollowing a perfect hemisphere, when your gouge touches the side (mouth) it's cutting tip meets the center of the bottom (end of the cut) at something more than 45 degrees considering the thickness of the gouge itself. That means you cannot ride the bevel throughout the cut if your grind angle is 45 degrees or less. At some point you will lose the control the bevel provides. If that includes whizzing through the bottom, into the up-going far side of the sphere, it will take the tip of the gouge up, over the top, and down again to the tool rest. Ouch! Sore knuckle! To be able to ride the bevel to the end of the cut, it must be more than 45 degrees. I typically use $60-65$ degrees. Of course, if your gouge is not sharp, you may be pushing too hard, and it may happen anyway, but that's another problem. Why not just hollow in the reverse direction or use a scraper? Those are both viable options, but they're not the usual way I do it.

Q: What kind of glue do you use?
A: I typically use yellow wood glue (like Titebond I) for a permanent bond. For demos I may use thick CA glue so we can proceed with the demo using the same blank.

Q: Do you use dry or wet (green) wood?
A: It's important to me to use dry wood because movement from the drying process could put a lot of stress on a very thin glue joint.

Q: Do you use the same size blank for a belted ball as for a regular hollow sphere?
A: I generally do use the same size blank, but that introduces extra wood that must be removed after the hollow hemispheres are glued together. If I am cutting blanks that I know will be used for "Belted Balls" I will allow for the extra mass of the "belt," and cut them appropriately shorter.

Q: Does it matter if you turn the sphere with end grain or face grain orientation?
A: It can be an important consideration for several reasons. First, end grain glue joints are not as strong as face grain, and the glue joint surfaces are typically very thin. Second, a glue joint directly across the wood fibers (grain) is virtually impossible to hide. Third, any figure alignment you wish to do is often easier if the glue joint runs with the grain.

Have a Ball! Turn a [thin wall hollow] Sphere.

Handout

References.

$>$ Christian Delhon - Spherical Box - AW2004p44-49.pdf
> Frederick C Hill - Spherical Thinking - AW2504p29-32.pdf

